If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+y=234
We move all terms to the left:
y^2+y-(234)=0
a = 1; b = 1; c = -234;
Δ = b2-4ac
Δ = 12-4·1·(-234)
Δ = 937
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{937}}{2*1}=\frac{-1-\sqrt{937}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{937}}{2*1}=\frac{-1+\sqrt{937}}{2} $
| c-2+ -4=-3 | | 4-(2x-3)=x | | x=1/5=3/5 | | 4-(2x-3)=0 | | 200m-125m+48000=50000-175m | | 3(x-1)=-4 | | 5(8-x)+36=102-2.5(3x+24) | | 210+4x=12x | | r/3+10.7=14.7 | | 2x-9(4x+33)=43 | | 110=6x+4(5x-5) | | (p-2)/4=(2p-3)/8 | | 21+4x=64x | | 1.6x-2.1=7.5 | | -4x-66=2x+48 | | q+8=-25 | | 2y+17=2y+5 | | 4z−5=3 | | 9.58=5.58+2w | | 5x+3(6x-22)=141 | | 2+19p=1255 | | 2+19p=125 | | 7x-2(3x+21)=-37 | | 4x-11+81+x=180 | | 3c+72=180 | | 4d−5=3 | | x-4(x-2)=-52 | | r/3-6=-3 | | 6+2(5-3x)=2(2x+8) | | 350+4x=64x | | 58+38+28x=180 | | 40+2u+2u=180 |